
 
 
  A CURIOUS NEW RESULT IN SWITCHING THEORY 
 
 
     by Lee C.F. Sallows 
 
 
 
"Gödel turned out to be an unadulterated Platonist, and apparently believed that an 
eternal "not" was laid up in heaven, where virtuous logicians might hope to meet it 
hereafter." - Bertrand Russell [1]. 
 
 
Introduction 
 
The following account relates how a puzzle brought to light a remarkably simple, 
highly intriguing, probably useless, but undeniably fundamental new result in 
switching theory. Spice is added to the story through the role played by construction 
of a wildly improbable electronic device in helping to establish the new finding. 
"Switching theory" has a slightly old-fashioned ring to it, what exactly does it 
signify? A brief remark on this and a couple of related matters will set our subject in  
perspective and prepare the way for issues arising later. 
 
Computer science emerges into view as a separate discipline from a cluster of related 
topics, chief among them symbolic logic, Boolean algebra, switching and automata 
theory. Logic, originating with Aristotle, concerns the study of deductive inference, 
of the conditions of truth-preservation in deriving one statement from another. More 
than two millenia following Aristotle, George Boole was to design his algebra to 
model logic, a step largely intended to replace reasoning with calculation, with the 
rule-governed manipulation of symbols. Boolean algebra, we remind ourselves, 
comprises a so-called formal system: a well-defined set of signs and conventions by 
means of which, starting with certain symbol strings, certain others may be legally 
substituted, the latter being deemed equivalent to the former. No meaning is attached 
to these transformations, except in the loose identification of sign with signified 
usual when applying such formalisms to external systems (such as logic). Whether 
the algebra applied really is an accurate model of the system in question is of course 
a problem not resolvable within the algebra itself. 
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A notable success in the practical application of Boolean algebra occurred with the 
appearance of C.E. Shannon's "Symbolic Analysis of Relay and Switching Circuits" 
in 1938 [2]. Ever since, the analogy of "0" and "1" with open and closed switch 
contacts, and of series/parallel switch connections with AND/OR Boolean operators 
has been a stereotypical textbook example. Then, as today, a relay was an electro-
magnetically operated switch, a device opening up new realms of complexity in the 
possibilities it offered of switches controlling still other switches in endlessly 
convoluted networks. The problems thrown up in this new domain soon became the 
concern of "switching theory". 
 
Ten years following Shannon, switching theory advanced to a new level of maturity 
with G.A. Montgomerie's "Sketch for an Algebra of Relay and Contactor Circuits" 
[3]. By now a vital distinction had been recognized in the division of networks into 
combinational and sequential types. Combinational circuits were those in which the 
open or closed states of every switch depended purely upon current input values (0,1) 
to the network. A Boolean formula, simple or complicated, would always decribe 
this relation satisfactorily. Sequential circuits, on the other hand, were those whose 
response to input patterns also depended in part on their past history: on the 
foregoing sequence of values presented. The behaviour of the circuit might thus 
change significantly after receipt of some critical input, the latter event thereby being 
in some sense "remembered". In fact memory (introduced via feedback effects) was 
the key property of such networks. Flow tables and state transition diagrams now 
displaced static formulas in the need to capture this temporal context-dependent 
behaviour. Thus was launched the study of what came to be called sequential or finite 
state machines, a field later to be known as automata theory. 
 
The progress of developments in automata theory is beyond our purpose here: 
advances were rapid, leading to theoretical results of great moment in connection 
with Turing machines and mathematical linguistics, the subject soon shading 
seamlessly into computer science proper. Back in the mainstream of switching theory 
however, by the 1960's advances in technology had shifted emphasis away from 
relays and onto "electronic digital logic" realized in micro-packaged integrated 
circuits or "chips". Mechanically actuated contacts gave way before "AND-gates" 
and "OR-gates" etc., the binary states (0,1) of whose input and output lines were 
represented by two discrete voltage levels. Soon Boolean algebra was a standard item 
on the training syllabus of electronics engineers; formerly recondite chapters of the 
now slightly outmoded-sounding "switching theory" became the stock-in-trade of 
every technician. 
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Hence, overtaken by studies into the more challenging finite state machines, as a 
subject of research, switching theory dropped into the background, furnishing instead 
a well-knit body of established results that found daily application in electronic logic 
design. This is not to say that all the theoretical questions raised had been 
successfully answered. Many problems, especially in the area of minimization, 
remained unsolved; later these would provide a point of departure for the currently 
vigorous theory of circuit complexity (see [4]), a field closely related to, yet 
historically distinct from the old switching theory. In any case, mass-production 
techniques had extinguished any practical need for such solutions. Gone forever was 
the pioneering impetus of the early days. 
 
Who then would have expected to stumble across an undiscovered nugget still 
reposing amid the slag-heaps of this abandoned mine? 
 
 
A Knotty Problem 
 
Recently browsing through A Computer Science Reader (Selections from Abacus, 
Springer-Verlag 1988), my eye was caught by an article on Automated Reasoning by 
Larry Wos [5]. Wos illustrated the working of his reasoning program by means of a 
few example problems, one of which immediately captured my attention. It was this: 
 

                   
                  
The black box above receives binary inputs (0, 1) at x, y and z. Each output line 
yields the complement of the corresponding input; that is, if x is 0, x' is 1, and so on. 
Each of the eight possible 3-bit input words thus gives rise to its complementary 
word at the outputs. Normally speaking such a transfer function would be achieved 
by using three inverters (NOT's) connected between each input and output. 
 
Problem: Design a network using any number of AND and OR gates, but not more 
than two (2) NOT's  to achieve exactly the same input-output function. (The AND's 
and OR's may have as many inputs as required.) 
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Now relays, gates, switchery and logic hold powerful fascination for some. The 
possibility of simulating three inverters by means of two had never so much as 
crossed my mind before; the bare contingency hinted indefinably at something 
wonderful. It seemed to call for ingenious circuitry. The puzzle had me hooked in no 
time. 
 
It turned out to be a far tougher conundrum than first imagined. So much so, in its 
elusiveness it became hypnotic. In fact, on and off I took almost a fortnight to solve 
it, succeeding even then only through reasoning aided by trial and error. But the 
solution was worth waiting for: an intricate network of true Platonic elegance and 
inevitablity. It is a logical constellation that was always there, sooner or later 
someone was bound to find it; a sheer poem for the switching theorist. As the sequel 
shows, the name of the man who did find it first turned out to be Edward F. Moore, a 
distinguished pioneer in the field of automata theory. From now on I shall refer to the 
basic  arrangement as Moore's circuit. Incidentally, Wos’s automated reasoning 
program was successful in solving the problem; his method being too complex to 
outline here, a detailed account can be found in [6]. 
 
One version of Moore's circuit is shown in Figure 1. The network admits of a number 
of (essentially minor) variations, some more economical in gates than others; our 
example is picked for its functional clarity. 
 
 

 
 

Figure 1 
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Interested readers might like to seek for a more parsimonious circuit using one gate 
fewer than Figure 1 (multi-input gates then being counted as if built up from 2-input 
equivalents; Figure 1 thus containing 11 AND’s and 14 OR’s). In view of its 
importance to what follows, a few comments on Moore’s circuit will be worthwhile.                      
 
Central to every variant of Moore's solution is circuitry leading to a binary 
representation of the number of zeros present in the input word (xyz) by the four 
possible states of the two inverter outputs: 00 = none, 01 = one, 10 = two, 11 = three 
zeros. Simple as this may seem, there is but a single way to achieve it. In effect, each 
inverter's output state (0 or 1) must represent a classification of xyz according to 
whether the number of ones it contains falls in the top or bottom row (first inverter), 
and in the left or right column (second inverter) of the following table: 
 

                                                 
 
In this way the intersection of A's row and B's column choice pinpoints  the number 
of ones (and thus, zeros) in the input word. 
 
In our circuit, use of AND gates to combine this information with the specific input 
pattern enables a complete decoding of the input word. See how each of the seven 
lines feeding the three OR gates at the right is uniquely activated by a different input 
word (indicated). The circuitry to the left is thus a "3-bit to parallel decoder". Note 
that although available, the eighth line (23  = 8) is unused since, when active (i.e. 
when x = y = z = 1), all outputs are to remain 0. 
 
Similarly, the three interconnected output OR's comprise a "parallel to 3-bit re-
coder", the coding in this case ensuring that xyz inputs that are 0 result in 
corresponding outputs that are 1, and vice versa: an active "x‾y‾z " line turns on 
outputs y and z, for instance. A point to observe though is that alternative OR 
combinations could replace (or supplement) this one to produce any desired input-
output functions: an output word may have as many bits as we please, and distinct 
recoders working in parallel could realise unlimited  simultaneous output words, if 
required. Already one senses a surprising latent potency here, although, as we shall 
see, most of the magic in Moore's circuit lies exactly in the mischievous recoding he 
did choose. 
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Speaking of coding and recoding serves to recall that a circuit diagram is a kind of 
coded representation and thus itself capable of translation into different symbol 
systems. A change of medium often brings new aspects into view. An obvious 
alternative in this connection is Boolean algebra. Re-expressing Moore's circuit in 
these terms is a mere mechanical exercise. 
 
Designating the output of inverter A as A, for instance, we can work backwards 
through the circuitry towards the inputs, transcribing directly as we go: 
 
   A  =  Not[(x & y) Or (x & z) Or (y & z)]. 
 
Comparing formula with circuit we find the inverter is replaced by Not, the 3-termed, 
square-bracketed Or expression deputizes for the OR-gate wired to its input, and the 
three parenthesized terms stand in for the AND-gates communicating between the 
input pairs xy, xz and yz and the OR inputs. Note how the nesting of expressions 
reproduces the pattern of outputs feeding into inputs in the circuit. We are looking at 
a fragment of Moore's circuit written in a different language. 
 
Analogously, and taking advantage of the above, a compact expression representing 
the output B of inverter B can also be written: 
 
                  B = Not[(x & A) Or (y & A) Or (z & A) Or (x & y & z)]. 
 
Note how the presence of A as an argument in the function describing B is more than 
a convenient abbreviation, it reflects A's antecedence in the signal processing path: 
the value of A must already be available in determining that of B, but not vice versa, 
a point we shall have cause to recall later. However, the real convenience of these 
partial descriptions becomes clear in the crisp encapsulation of the complete Moore 
circuit they now facilitate: 
  
                   x' =  [(y & A) Or (z & A) Or (B & y & z) Or (A & B)] 
 
                   y' =  [(x & A) Or (z & A) Or (B & x & z) Or (A & B)] 
 
                   z' =  [(x & A) Or (y & A) Or (B & x & y) Or (A & B)] 
 
 
See how the equations expose a (predictable) 3-fold functional symmetry hinted at, 
but less successfully conveyed, by their equivalent  circuit diagram, an obfuscation 
resulting from the latter's confinement  to two dimensions. (An amusing exercise is to 
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design a 3-D version of  the circuit recapturing the trilateral balance.) Still later we 
shall have occasion to recall these formulas. So much then for a preliminary look at 
Moore's circuit. 
 
 
Networks and Notworks 
 
 
This was all fine as far as it went: an intriguing puzzle with a beautiful solution, if 
lacking in practical application. During an early stage in reaching that solution 
however, a rather astounding thought hit me. As an electronics engineer the idea 
occurred to mind quite easily and, although perhaps ingenious in small degree, is 
certainly no creative tour de force. Nevertheless, the implications struck me as 
luminous and compelling. The idea was simply this: 
 
If it is possible to simulate three independent NOT-functions using only two primary 
NOT's (or real inverters) then couldn't we use two of those three in order to simulate 
a second set of three NOT-functions? At this stage, having used only two of the first 
set of three, there would still be one over. That means that a total of FOUR 
independent NOT-functions would have been simulated while still using only two 
real inverters. Figure 2 makes the proposal explicit. 
 

 

Figure 2

                                               
Consider the circuit shown. Network 2 is the straightforward Moore circuit; as such 
its behaviour is functionally equivalent to an outwardly similar box containing three 
separate NOT's or inverters connected between each of its three inputs and outputs. 
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Network 1 is identical to Network 2 except that its two inverters have been removed. 
The internal input-output connections normally made to the missing inverters have 
been brought out and  connected instead to two channels of Network 2. Network 2 
thus furnishes the two NOT functions required for normal working of  Network 1 
(channels a, b, c) while still leaving a fourth independent complement function over 
(channel d).That is all.  
 
The ramifications of this stratagem ripple swiftly outwards. For clearly the four 
newly created NOT-functions can again be nested in an endlessly expandable 
recursive hierarchy to produce an unlimited number of independent negation 
functions; see Figure 3. 
 

            

Figure 3
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In other words (and striving for the infinite in the name of logic): 
 
Theorem I 
 
In any universe, exactly two fundamental negators suffice for concomitant synthesis 
of all others. 
 
But this soon leads us to a couple of other interesting consequences: 
 
Theorem II 
 
A device whose input-output relations are described by some system of Boolean 
functions is always constructible using a network comprising some number of AND- 
and OR-gates but no more that two inverters. 
 
Or, still more ambitiously, (and relying on other well-known results in the field): 
 
Theorem III 
 
Every possible finite state machine (automaton) is realizable using no more than two 
primary complement functions. 
 
Am I alone in continuing to feel a sense of wonder in this simple discovery? 
 
As I say, the idea for the above configuration occurred to me at the time of reading 
Wos' article, even before solving his problem. Taking it to be a merely personal 
rediscovery of a presumably well-established result in logic, thought of any further 
development never arose. Being satisfied the idea was sound, as an engineer I felt 
only sheer surprise that, in principle, all the millions of inverters in use throughout 
the world could be "seeded" from a single pair. Having a romantic turn of mind, it 
conjured an imaginative vision of a sort of Yin-Yang dyad of inverters occupying a 
dusty, temperature-controlled glass case at the National Bureau of Standards. Wires 
leading away from the four old-fashioned knurled brass input and output terminals 
lead off for distribution to other boxes scattered about the nation. (I should say five 
terminals: a "common" or reference would also be required.) 
 
Well-established result or no, the self-duplicating inverter circuit was a revelation to 
me and continued to exercise fascination. Having nothing better to do, for fun I typed 
out a devilish new version of Wos' problem, sending it around to tease friends and 
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colleagues at computer science and mathematics departments at the University of 
Nijmegen. In the new version, otherwise identical to the old, four complement 
functions are to be realized instead of three. As before, of course, only two inverters 
are allowed. (As a matter of fact, by Theorem II above, the input-output functions 
demanded by any severer version of the problem could be made as complicated as 
one wished. Asking for four NOT-functions is the obvious choice, this representing 
the least jump in difficulty at the new level of complexity.) 
 
In a few cases the response to this teasing was sharper than anticipated. I suppose the 
problem is so clear-cut and inescapable it poses a provocative challenge to one's self-
estimate as an engineer, mathematician, logician or whatever. Prevarication in the 
face of this kind of simplicity is difficult; admitting one cannot solve such an 
apparently elementary problem, even more so. The trouble is, unless you happen to 
be aware of Moore's circuit (as most people are not), the two separate insights needed 
for reaching the solution put it well beyond all reasonable ingenuity. It would be a 
creative act to re-invent Moore's circuit from scratch; penetrating to the fact that such 
a circuit is necessary as a component in the 4-complement configuration asks too 
much of human imagination. In light of this, some of the scepticism poured on my 
assurances that the solution was complex but straightforward, involving absolutely 
no hanky-panky, becomes explicable. 
 
It was at this stage that Hans Cornet, a mathematical friend at The Hague, ran across 
what proved to be the original source of the 3-complement problem. This was in 
Marvin Minsky's book Computation: Finite and Infinite Machines (Prentice-Hall 
Inc., 1967, p. 65), a confirmation of my assumption that Wos had merely borrowed 
rather than invented the problem. Looking up Minsky's book in Nijmegen I learned 
the problem had first been "suggested by E.F. Moore". Admittedly the solution 
circuit (shown only in skeletal form) is not overtly attributed to Moore but surely no 
one could pose such a riddle without first having unravelled it? 
 
A comment by Minsky following the problem statement drew from me an 
appreciative smile: "The solution net ... is quite hard to find, but it is an extremely 
instructive problem to work on, so keep trying! Do not look at the solution unless 
desperate." It was a final remark of his however, that brought me up with a jolt. With 
deepening puzzlement I ran my eye again and again over his two terminal sentences: 
To what extent can this result be applied to itself - that is, how many NOTs are 
needed to obtain K simultaneous complements? This leads to a whole theory in itself; 
see Gilbert [1954] and Markov [1958]. 
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Clearly the sufficiency of two NOT's in obtaining K (an arbitrary number of) 
complements was unknown to Minsky. Yet to speak of "applying the result to itself" 
was a pretty reasonable description of exactly the trick used in my 4-complement 
circuit. How could it be that he had envisioned the self-same possibility without 
ending up at the same idea? Why on earth should a "whole theory" be required? 
 
My thoughts sped back to those sceptical friends who could "almost prove your 4-
complement problem is insoluble". Previously I could afford to be smug, now it was 
me against Minsky, Gilbert and Markov — the latter a name of intimidating authority 
in the world of mathematics. Was it likely his theory would turn out to be wrong? 
Hadn't I after all overlooked some inherent logical flaw that rendered reflexive re-
application of the circuit to itself in fact unworkable? I lost no time in hunting up the 
papers from Gilbert and Markov. Alas, the journals were not available in Nijmegen; 
there was nothing for it but to order copies. That would take a week or so. In the 
meantime I returned to the 4-complement circuit, re-examining it from every angle. 
 
Later that evening I banged a defiant fist on the table. It was no good: Markov or no 
Markov, theory or no theory, there was nothing wrong with that circuit: it had to 
work! —And why not demonstrate my reasoning agreed with reality by building it? 
The very next day saw me launched on construction. 
 
 
 
The 4-Complement Simulator 
 
 
Physical realisation of the circuit followed conventional electronic practice. Taking 
standard ttl integrated circuits lying to hand (six SN74LS08's and eight SN74LS32's: 
14 pin packages containing four 2-input AND's and OR's, respectively) and a 
prototype-development printed circuit card fitted out with 14-pin chip holders, using 
a wire-wrap pistol to make interconnections, assembly was completed within a 
matter of hours. 
 
An obvious approach in implementing the device was dictated by the very principle 
of operation: first build and test two quite independent Moore circuits, afterwards 
remove the inverters from one (a single SN74LS04 chip) and replace with 
connections to two inputs and outputs on the other. This is exactly what I did. In the 
photograph on page 12 the twin Moore circuits are formed by the two groups of eight 
chips furthest from the connector. In one circuit, four wires leading from the  
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underside of the card to a small plug that replaces the discarded inverter chip are 
plain to see. 
  

                 
 
Finally, to facilitate testing, a push button controlled 4-bit binary counter and a 
sprinkling of light-emitting diodes (LEDs) were added. Successive presses on the 
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button (seen adjacent to the main connector) run the counter through 0000, 0001, 
0010, .. , 1111, the sequence of sixteen possible 4-bit words. Counter outputs are 
wired to the four NOT-simulator inputs, the presently activated word being indicated 
by a line of four adjacent LEDs situated close by (on = 0, off = 1). Six remaining 
LEDs dotted about the board report on the high/low status of the 2 X 3 Moore circuit 
outputs. For ease of comparability one of these is duplicated so as to form a single 
line of four evenly spaced LEDs monitoring the four main outputs. 
 
These additions account for two of the three extra chips at one end of the board: an 
SN74LS93 binary counter and an SN74LS00 4 X two-input NAND used as a so-
called set-reset flip-flop to eliminate push-button contact bounce problems. The need 
for still a further chip made itself felt when, having completed and tested the two 
separate Moore circuits, the final 4-complement simulator produced by combining 
them failed to work as anticipated! 
 
At first this was unnerving. Using an oscilloscope, however, the source of the trouble 
was soon tracked down: under certain input transitions Moore's circuit exhibits race 
conditions. Race conditions arise when delays introduced by hardware inertia result 
in unintended overlaps between logical state durations, leading to transitory "spikes" 
or pulses of very short duration (the antecedence of inverter A in the signal 
processing path now shows its significance; see Figure 4).   
 
  

                                              

Figure 4 
 
Race condition: Input word xyz 
changes from 101 to 100. Delayed 
reaction of second inverter (B) to 
first (A) causes brief pulse at the 
output of the AND to which they 
are connected. 

 13



Such spikes can be innocuous enough in many applications, but not so in the  4-
complement simulator. Here, a spike emerging from output x' of the nested circuit 
becomes gated through the outer circuit to the input of the second inverter (B, see 
Figures 1 and 2) - itself, however, now simulated by channel y of the nested 
circuit.Our spike, in other words, traverses a sneaky feedback loop and now finds 
itself re-entering an input of the inner Moore circuit! A vicious circle has been 
established: regenerative oscillation sets in. 
 
Notice that the culprit here is not the feedback loop — an intrinsic feature of the 
nested scheme (to which we shall return) — but the pulse generated by the race 
condition. Happily, a cure is easily effected through interposing a delay in the 
appropriate line (connecting the output of inverter A to the AND-gate input so as to 
ensure the latter cannot receive a 1 from the former until after the output of inverter 
B has changed to 0). This accounts for the last remaining chip in the photo (another 
SN74LS08; four AND's connected together head to tail, each contributing its own 
share to the aggregate delay thus created). With this modification completed, turning 
on the power once again, I finally had the satisfaction of verifying a perfectly 
functioning 4-complement simulator. It was a happy moment of vindication and 
triumph. 
 
The 4-complement circuit thus stood acquitted — though in hindsight it is amusing 
to recall exultation on completion of one of the most futile or, at least, redundant 
items of electronic apparatus ever constructed! The Great Unanswered Question now 
remaining, however, was how this success could ever be reconciled with the 
apparently contradictory theory of Gilbert and Markov? The working device was an 
unshakeable fact, yet a theorem in logic cannot be validated via any empirical 
demonstration, however suggestive. Could some sort of a disillusionment still lurk in 
the publications awaited? 
 
 
A Gordian Not Unravelled 
 
Following eventual receipt of the anxiously awaited material, a rapid glance at 
Markov's and Gilbert's conclusions confirmed Minsky's original remark: blatant 
contradiction of the two-inverters-always-suffice idea. Steeling myself to the 
mathematics, I settled down to read. Gilbert's is the earlier, exploratory paper, his 
partial result later subsumed by Markov's more embracing work, "On the Inversion 
Complexity of a System of Functions" (translated by Morris D. Friedman). We 
confine ourselves to the latter. 
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Markov begins his monograph with a series of careful definitions. A small alphabet 
of the signs familiar from Boolean algebra is introduced, constants and variables 
included: {0, 1, x1, ... , xn , &, Or, Not, (, )}. Certain words or strings of these are 
specified as formulas and sub-formulas, negative sub-formulas being characterized as 
those prefixed by "Not". The so-called inversion complexity of a system of sub-
formulas is now identified with the number of distinct negative sub-formulas 
occurring in it. 
 
My prècis lacks his precision but the outline of what is going on here is already clear: 
substituting concatenations of discrete symbols for the tangled Celtic knotwork 
language of the switching engineer, Boolean formulas replace circuit diagrams: 
"Not"s are to be counted instead of inverters. 
 
So far so good. Moore's problem itself might well have been so reformulated as to 
ask for a system of Boolean functions equivalent to x' = Not(x),  y' = Not(y),  z' = 
Not(z), but in which "Not" (preceeding a distinct sub-formula) would occur no more 
than twice. Our previously derived set of three formulas describing Moore's circuit is 
just such a solution. As before, we are merely talking about the same thing in a 
different language. 
 
Markov's list of definitions ends abruptly with a bold statement of his result, 
followed by a one page lemma running into sub-subscripted, sub-superscripted 
variables that "plays an essential role in the proof".  The full proof is spared us — the 
author doubtless feeling that a recapitulation of the obvious would be too tedious — 
and so ends his paper. It is just as well: that lemma might have been written in Celtic 
for all I could make of it (printing errors abound too). Not that I questioned his result 
for a moment. This was a good instance of what Richard Guy calls proof by 
intimidation. 
 
But what was that result? Following Markov we must be quite precise here. 
 
Consider a system of m Boolean functions of n arguments. It can be defined by 
different systems of m formulas in n variables. Take now a worst case instance of 
such a system of functions in which the number of distinct negative sub-formulas 
necessary to their definition is at its greatest. Then, says Markov, the least number of 
negative sub-formulas that will have to appear in the formulas defining the functions 
will be |log2 n|+1 = the number of digits in the binary representation of n. (The 
vertical strokes indicate the truncated value of log2 n) |log2 n|+1, in other words, 
otherwise known as I or the inversion complexity of the system of functions, is 
indeed the Markovian equivalent to the minimum number of separate inverters that 
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would be required in any network implementation of its formulas. Note that m, the 
number of functions (or formulas) does not actually enter into it. (Think of all the 
recoders that can be connected to Moore's 3-bit to parallel decoder, each yielding a 
new output function, none demanding extra negations). 
 
We can examine this further by taking Moore's problem as a example. Translating 
into Boolean terms, our question concerns a system of three functions (x' = Not(x), y' 
= Not(y), z' = Not(z), of three arguments x, y, z). Applying Markov's result we find n 
= 3, log2 3 = 1.5849..., hence I = 1 + 1 = 2. That agrees with our conclusion: two 
inverters sufficient. 
 
But what about the 4-complement problem? Now n = 4, log2 4 = 2, I = 2 + 1 = 3. 
Three inverters are required. That disagrees with our conclusion. In effect, Theorem I 
above would assert that I = 2, irrespective of m and n. Here is the contradiction. 
 
The collision here is so acute that something will have to give way. And so it proves. 
Forcing the issue to a head, an obvious step now is to produce a counter-example to 
Markov's result by writing out the 4-complement circuit as a system of Boolean 
formulas, thus demonstrating that only two distinct negative sub-formulas need 
appear. 
 
And indeed, with this comes a breakthrough and the resolution to this whole curious 
dilemma. The scales, so to speak, are about to fall from our I's. For with an attempt to 
write out a set of formulas depicting the 4-complement circuit comes the discovery 
that no Boolean representation of it exists. 
 
The barrier to deriving a Boolean representation is revealing. Looking back at the 4-
complement block diagram (Figure 2), recall that Network 2, the nested box, is a 
pure Moore circuit for which we already have a system of formulas. To represent the 
complete 4-complement box, however, we first need to respecify x, y and z — the 
inputs to the nested box — in terms of the new set of arguments: a, b, c and d, the 
main inputs. The obstacle to achieving this appears in finding that no expression for y 
can be derived without y occurring as one of its own arguments! 
 
How does this come about? It is our old friend the sneaky feedback loop, reminding 
us that this is no longer a simple combinational circuit like Moore's. Through the 
nesting of one box in another a primitive form of memory has been introduced 
whereby it has become a sequential switching circuit whose subsequent internal state 
depends both upon present inputs and current state: the present value of y plays a part 
in determining y's new value. In short, the 4-complement circuit is really a finite state 
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machine, a device whose context-sensitive action lies beyond the descriptive scope of 
Boolean formulas. The facile notion that everything can always be "talked about in a 
different language" is thus not without its pitfalls. 
 
Still sneakier, (and this really is rather subtle) the 4-complement circuit is a finite 
state machine mimicking the behaviour of a non-sequential machine, the latter 
comprising a humble combinational circuit of just four inverters: a' = Not(a), b' = 
Not(b), c' = Not(c), d' = Not(d). Here we have the peculiar case of a higher or meta-
Boolean form of life disguised as a lower or Boolean form. The camouflage is truly 
effective too, since no experiment conducted on the terminals of the 4-complement 
(black) box could determine whether it contained Boolean or non-Boolean-
representable entrails. (Although curiously — and here is another tricky twist — the 
non-Boolean circuit is actually composed entirely of Boolean components: AND's, 
OR's and NOT's, an indication both of the import of their interconnection pattern and 
of the source of weakness in the algebra that cannot describe it.) 
 
A fine distinction is involved in all this that it is worth being clear about. A Boolean 
function describes a relation or mapping between one two-valued variable (the value 
of the function) and others (its arguments). As such it may be expressed or specified 
in different ways; in a tabulation of corresponding values, for instance. Often we 
represent it as a Boolean formula, that is to say, as a legal expression in the 
formalism called Boolean algebra. In that case, the dependence of the formula's value 
on that of its variables will strictly mirror that of the function on its arguments. 
Moreover, any Boolean function can always be described by a Boolean formula. 
 
But that is not to say that it has to be so represented or that a specification or 
implementation of the function must depend on some analogous structure or 
mechanism. The 4-complement finite state machine is an example of an alternative 
implementation, its effect representable by a' = Not(a), etc., but its internal operation 
(as embodied in its circuit diagram) having no counterpart in Boolean algebra. The 
importance of this is that generalizations about Boolean functions are not to be 
reliably based soley on inferences about Boolean representations of those functions. 
 
So it is that the supposed discrepancy between Markov's conclusion and Theorem I 
turns out to be illusory. The meticulous definitions at the beginning of his paper are 
not for nothing. As a careful re-examination of the account above will show, the 
result he proves is explicitly restricted to Boolean functions realized in Boolean 
formulas. Our concern, on the other hand, (if only lately appreciated) has been with 
Boolean functions realized otherwise. Minsky's implication notwithstanding, 
Markov's work is simply inapplicable to the case in hand. Like the 4-complement 
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box, the K-complement box need employ no more than two inverters. But at least 
|log2 K|+1 distinct negative sub-formulas will be required in any Boolean formulas 
describing the input-output functions of the latter. No contradiction is implied. E.N. 
Gilbert’s paper, incidentally, which also addresses the minimum inverter requirement 
question is equivalently restricted, his analysis being confined to loop-free networks. 
 
Even so, doesn’t a suspicion linger that the K-complement simulator is in some way 
yielding something for nothing? After all, inverting binary signals is a concrete if 
trivial operation, analogous to flipping over coins so as to make heads from tails or 
tails from heads. In the end, just how is it that K such reversals can be effected given 
only two reversing machines? 
 
The answer is simple. It is done by using those machines more than once. Through 
reiterated application we can achieve serially the same result as K single-action 
machines working in parallel. But at a price, to be sure. Here is how John E. Savage 
puts it in The Complexity of Computing [4]: "Sequential machines compute logic 
functions, just as do logic circuits. However, since sequential machines use their 
memories to reuse their logic circuitry, they can realize functions with less circuitry 
than a no-memory machine but at the expense of time" [my italics]. As we saw 
earlier, hardware-implemented logic introduces lag. As K increases, so will the 
number of passes through feedback paths in the nested circuitry, and the longer final 
outputs will take in responding to changing input patterns. In practice this would be a 
serious factor to consider. 
 
Lastly, note how Savage casts incidental light on the reason why a single inverter – 
however combined with AND’s and OR’s – is inadequate for simulating further 
negators. Negation of externally presented bits on one channel will always require 
one inverter. But at least a second will be demanded in creating the memory needed 
in re-utilizing that first. In fact, as we have seen, two inverters are both necessary and 
sufficient. 
 
Simple but hard-won insights are compressed into the foregoing paragraphs. Having 
gained clearer understanding, a letter to the author whose casual remarks unwittingly 
triggered this improbable detective story seemed not inapposite. I was gratified thus 
when, in a subsequent communication, Marvin Minsky warmly concurred in the 
above analysis, graciously conceding a too hasty perusal of Gilbert and Markov's 
articles. Likewise, his "To what extent can this result be applied to itself?" turned out 
to be a mere chance form of words, no reference to recursion intended, but resonant 
to me under the circumstances. 
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Thus were K-nots disentangled from a Markov chain of deduction, and the 
sufficiency of two negators in producing moore inverters ad libitum confirmed. 
 
 
 
 
Conclusion 
 
The inception of this narrative was a puzzle appearing in Abacus. As a matter of fact, 
the question there posed came in two, supposedly equivalent, versions: Moore's 
original problem in circuit design and an analagous problem in computer 
programming. In the latter form we are asked to "write an [assembly language] 
program that will store in locations U, V, W the 1's complement of locations x, y and 
z. You can use as many COPY, OR and AND instructions as you like, but you cannot 
use more than two COMP (1's complement) instructions." This second version is 
absent from Wos et al’s Automated Reasoning [6], appearing only subsequently in 
his synoptic Abacus article. The trouble is, although aimed at preserving the essence 
of the former, the conditions imposed are actually more restrictive than Moore's: a 
whole class of solutions becoming inadvertently excluded. 
 
What is it that makes the program version different? In effect, it is a silent prohibition 
against certain kinds of perfectly valid circuit configurations: a ruling out of the use 
of feedback loops implicit in the preclusion of a JUMP instruction. Self-modifying 
functions would be excluded from representation in software. That is, for every 
program solution there would be an equivalent circuit, but not vice versa. Just as 
sequential networks defy description in the notation of Boolean algebra, so loops in 
any circuit solution will defeat implementation in such a program.  
 
The slip is an easy one to make, and especially so when Moore's own circuit uses no 
feedback. Perhaps it was familiarity with this that unconciously acted to restrict 
Wos’s contemplation to combinational type solutions only. Let us make no mistake 
however: discarding one channel from the 4-complement simulator would leave a 
three channel device answering all the demands of Moore's problem. Here we have a 
finite state machine solution (one of an infinity) that cannot be represented in the 
reduced instruction code. I suspect that in the urge to translate Moore's problem into 
terms suited to his automatic reasoning program, Larry Wos temporarily 
underestimates and thus misrepresents the complexity and potential of networks 
using AND's, OR's and NOT's. [In passing - and without any reference to the 
aforementioned author - the tendency to see circuit diagrams as engineer's easy-to-
read-picture-book-explications of "real mathematics" envisioned in putative 
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formulas, is not uncommon among mathematicians. Engineers, I may add, humble as 
their mental endowment may be, will be more impressed when condescension can be 
matched with insight into the advantages of a two-dimensional language.] Whether 
or not the automated reasoning technique could be successfully applied to the 4-
complement problem is a further interesting question. 
 
Following the lead suggested here, the 4-complement circuit is elegantly modelled in 
a simple computer program using iteration to imitate the feedback loop; see page 22. 
A series of assignment statements based on the earlier derived formulas describing 
Moore's circuit make up the body of the program. Figure 5 shows a version written in 
Turbo Pascal. Read in conjunction with Moore's circuit and Figure 2, the program is 
self-explanatory: more eloquent in fact than any verbal commentary on circuit 
operation. Interested readers may like to try the effect of including a write statement 
in the Repeat loop so as to expose the behaviour of y under different input sequences. 
 
A final observation on Markov's result must bring this account to a close. Figure 3 
depicted the endlessly expandable system of recursively nested Moore circuits for 
producing an arbitrary number of NOT's. Winning three NOT's from two, every level 
of nesting yields a spare inverting channel. In practice, however, the mass-production 
of NOT-functions can be enormously accelerated. How? Notice that Markov's I is 
still only 3 for n as high as 7. But this is another way of saying that a simple 
combinational circuit exists that can simulate seven inverters directly from three. 
Similarly, from these seven a further 127 can be produced at only the third level of 
nesting (2 -> 3 -> 7 -> 127 -> ...). Readers may like to test their grasp of the 
foregoing by writing a program that implements seven inversions while using only 
two Not operators. 
 
In conclusion, and before any false hopes are raised though, I ought to say that the 
above suggestion is intended merely as an exercise. Patents, it must be explained, 
have already been granted and the Sal-Mar International Inverter Hire Company Inc. 
is due for launching at an early date. Prompt negations of the highest quality will be 
available to customers via standard phone lines. Charges are expected to be modest. 
 
In the meantime, call me an adulterated Platonist if you will, up in heaven two 
eternal NOT's await the arrival of virtuous logicians (and the occasional virtuous 
engineer). I look forward to rubbing that in with Godel and Russell hereafter. 
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[Grateful thanks are due to Jim Propp, formerly of the Department of Mathematics, 
University of Maryland, whose searching criticisms brought to light various errors 
and made for substatial improvements to an earlier draft of this paper.] 
 
The above article was first published in The Mathematical Intelligencer, Vol. 12, No. 
1, 1990, pp 21-32. 
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Program Four_Complement_Simulator; {Turbo Pascal Version 3} 
 
{Compare Fig.2 and Moore circuit diagram for all that follows} 
 
Var 
   a,b,c,d,x,y,z, {main and nested inputs} 
   A1,B1,A2,B2,   {inverter outputs Networks 1/2} 
   aa,bb,cc,dd,   {main outputs a',b',c',d' in Fig.2} 
   initial_y      {previous y state} : Boolean; 
 
Procedure Specify_inputs; Var ai,bi,ci,di : char; 
  Begin 
     Writeln('Input 4 truth-values for a,b,c,d: T(rue)/F(alse)'); 
     Read(Kbd,ai,bi,ci,di); 
     If ai='T' Then a:=True Else a:=False; 
     If bi='T' Then b:=True Else b:=False; 
     If ci='T' Then c:=True Else c:=False; 
     If di='T' Then d:=True Else d:=False; 
     Writeln('Inputs:  ',a:8,b:8,c:8,d:8); 
  End; 
 
Begin {Main} 
   Specify_inputs; 
       {Nested box inputs x and z first respecified in terms of a,b,c,d:} 
   x:= ((a And b) Or (a And c) Or (b And c)); 
       {Expression for 1st inverter input in Moore circuit} 
   z:= d; 
       {z is connected to input d} 
       {Input y feedback involvement calls for iteration:} 
     Repeat 
       initial_y:=y; 
       A2:= Not((x And z) Or (x And y) Or (y And z)); 
            {Nested box first inverter output defined} 
       B2:= Not((x And A2) Or (y And A2) Or (z And A2) Or (x And y And z)); 
            {Nested box second inverter output defined} 
       A1:= ((y And A2) Or (z And A2) Or (y And z And B2) Or (A2 And B2)); 
            {A1 = x' output of nested box, see Fig.2} 
       y:=  ((a And A1) Or (b And A1) Or (c And A1) Or (a And b And c)); 
            {Expression for 2nd inverter input in Moore circuit. y may have 
             changed value, or not, depending on previous input pattern} 
     Until  y = initial_y; 
            {Remain in loop until y stabilizes; two loop passes always 
             suffice: y's value self-confirming after one change. A 
             simple 2-cycle Do-loop would serve equally well here} 
  B1:= (x And A2) Or (z And A2) Or (x And z And B2) Or (A2 And B2); 
            {B1 = y' output of nested box, see Fig. 2} 
 
            {Standard Moore circuit formulas follow} 
 
  aa:= ((b And A1) Or (c And A1) Or (b And c And B1) Or (A1 And B1)); 
  bb:= ((a And A1) Or (c And A1) Or (a And c And B1) Or (A1 And B1)); 
  cc:= ((a And A1) Or (b And A1) Or (a And b And B1) Or (A1 And B1)); 
  dd:= ((x And A2) Or (y And A2) Or (x And y And B2) Or (A2 And B2)); 
 
  Writeln('Outputs: ',aa:8,bb:8,cc:8,dd:8); 
End. 
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