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An appetiser

What sentence in this Mathematical Gazette contains seven a’s, four c’s,
thirty-two e’s, eight f’s, five g’s, ten h’s, twelve i’s, three I’s, three m’s, fifteen
n’s, eight o’s, one g, seven r’s, twenty-seven s’s, twenty-five t’s, four u’s,
eight v’s, seven w’s, four y’s & two z’s?

Introduction

A popular problem in the puzzle literature of late concerns construction
of sentences which tabulate their own digits:

In this sentence thereis 1 ‘0°, 11°“1’s,22’s,1°3°,14°, 15,16, 1
‘T,1‘8 and 1°9°.
A mathematical weakness of these curiosities is their dependence on the
representational form employed: solutions are not invariant under trans-
lation into different number base systems or other notations.
Recently, however, in the Gazette McKay and Waterman [1] have
investigated self-descriptive strings such as ‘6, 2, 1,0, 0, 0, 1, 0, 0, 0’, which
describe themselves in the sense of being self-enumerators:

integer 012 3 456 728 9

number of
occurrences 6 21 00 01 O0O0O0
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The tabulation of occurrences is seen to be identical to the string itself. Here
string structure is independent of notation, being entirely determined by the
properties of numbers rather than the digits in which they are expressed.
The authors go on to give a general formula for self-descriptive strings of
arbitrary length N (N > 7) and prove its uniqueness:

integer 0 1 2 3 4 5 N—-5 N—4 N-3 N-2 N-—-1

occurrences N—-4 21 00 0 ... 0 1 0 0 0

In this article we shall investigate closed cycles of strings in which, rather
than describing itself, each string enumerates its predecessor in the loop
until the last is enumerated by the first. The simplest such case is a loop of
length 2, an illustration in sentential style being:

The following sentence uses 1°0°, 7 “1’s,4 “2’s, 1 3°, 1 ‘4°, 1 ‘5,16,
1°7,28’sand 1°9’,
The previous sentence uses 1°0’, 8 ‘1’s,2 “2s, 1 3°, 2 “4’s, 1 °5°, 1 ‘6%,
27s, 18 and 1°9’,
The following couplet of co-descriptive strings, in which each describes the
other, is analogous to the self-descriptive string of McKay and Waterman:
6,3,0,0,0,0,0,1,0,0
7,1,0,1,0,0,1,0,0,0

and it too can be generalised to arbitrary length N (N > 8) (again unique, as
we shall see later):

0 1 N—-5 N—-4 N-3 N-2 N-1
—

0 0 1 0 0
0 1 0 0 0

—_—-
SO |
—_ o |w
co &
O |w

N—4
N—3

The reader may now be wondering if there exist triplets, quadruplets, etc. of
such sequentially-enumerating strings. Surprisingly, for N > 8 the answer is
negative: the above formula embodies the only existing co-descriptive cycle.
This is the main proposition we intend to prove here.

The iteration technique

We begin by developing a simple technique for deriving strings and
formulae like those above. Let S, be any given string of numbers of a certain
length N, and consider the sequence Sy, S, S,, ... where each successive
term is a string of length N corresponding to an enumeration of the
occurrences of 0, 1, ..., N—2, N—1, respectively, in the immediately
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preceding term. Hence, if N =7 and S is formed from the first seven digits
of , say, then we have:

0123456
£ -¥i4 1 58 2
S, 0211110
S, | 2410000
S, |41 10100

Notice that for all N, whatever S, is selected, S, must always comprise N
numbers <, so that the sum of the elements in S, (i.e. the total number of
numbers in S,) as well as in all subsequent terms equals N. In short, the
integers appearing in S;, i > 1, form partitions of N. Furthermore, strings
built up from different orderings of the same N numbers will all give rise to
an identical successor. However, since the number of distinct partitions of N
is finite, it is clear that the series cannot extend indefinitely without repetition
of some term. In other words, every such series must loop. Continuing the
above, for instance, gives a loop of length 3 as shown; i.e. a co-descriptive

Oh}

Now for small N we can investigate all possible repeating loops by setting
S, to each distinct partition of N in turn and extending the sequence until
repetition occurs. Hence for N =4 we would try S$,=4,0,0,0; 3,1,0,0;
2,2,0,0;2,1,1,0 and 1, 1, 1, 1, in turn, the order of the numbers in each
not being critical. This pencil and paper exercise soon reveals that besides
loops of length 1, the only co-descriptive cycles for N < 8 are a couplet
(N = 6) and the triplet (N = 7):

bttt
P N R Nt
| A T
£~ VS I SN N F R
—_— ) = = )
— OO =0 QO —
cONMNOONMNOCO
—_—O = O =
(=N oo Ne oo N
(=N No NN

length string type
N=4 1 2 10 self-descriptive
N=4 2 0 2 0 self-descriptive
N=35 21 2 00 self-descriptive
N=6 311100 } i inti
23010 of co-descriptive
N=17 32110 00 self-descriptive
3300100
N=7 41 02 000 co-descriptive
4 1 101 00
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Similar exhaustive searches for N larger than 7 are tedious and thus
better computer-generated, but soon reveal an overall characteristic: after a
few iterations strings become composed mainly of zeros, with non-zero
elements being confined to the first four or so positions except for a single 1
occurring near the end. This recurrent pattern soon suggests the idea of
applying iteration to a generalised string in which the middle terms are all
assumed to be zeros. Choosing S, to represent some simple partition of the
string of unspecified length N, such as N — 1, 1,0,0,...,0, we proceed as
usual:

0 1 2 3 4°5 N-5 N—4 N-3 N-2 N—1
Se | N—1. 100 0 0 0 0 0 0 0
S, | N2 1000 0 0 0 0 0 1
S, | N—=3 20 0 0 0 0 0 0 1 0
g, "Ny 11000 0 0 1 0 0
S | N—4 30 00 0 0 0 1 0 0
ST a1 0ot 900 0 1 0 0 o]
Ss | N—4 3 0 0 0 0 0 0 1 0 0]
S, | N3 1.0 10 0 0 1 0 0 0

The result of this tactic is that the pair of terms emerging in the loop of
length 2 encountered corresponds to that appearing in the co-descriptive
formula quoted earlier. We see then that the iterative method can be used to
generate both individual strings and general formulae.

Readers may care to repeat the above using different initial partitions; a
few trials will suffice to suggest the truth of our unexpected finding that for
N > 8, all series terminate in the self-descriptive string (which we shall call
Sy) or the co-descriptive pair above (which we shall call S,).

Proof of uniqueness

To prove our assertion that for all string lengths N > 8 the only existing
loops are S| and S, we focus on the changes in ‘nz;’, the number of
non-zero elements in the i-th string of the iteration process. We show that if,
for some i > 5, nz;,, > nz; holds, then the string S, , is in S,,; if however

nz;,, = nz; then either S; ,or S, ,is S;,or S, ,is in S,,. The proof is then

complete since for a loop other than S, or S|, to occur, all strings composing
it would have to satisfy nz,, , < nz;, which is clearly impossible.

We begin by establishing the general structure of S; (N > 8) as already
described informally in the previous section. Denoting the i-th string in the
iteration by

— gl
S;=a,aP,a,...,a
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recall that for 7 > 2 the sum of the coefficients equals N, i.e.

N-1

S aft = N;

Jj=0
and that since af” is by definition equal to the number of occurrences of j in
S, 1» the above equation implies that for i > 3,

N-1
2 Jafd =N,
Jj=0

Three important properties of all S;, i > 5, can now be identified. The
techniques needed are not unlike those used by McKay and Waterman, and
are left as exercises for the interested reader:

(1) At least half of the coefficients are zero.
(2) The first coefficient is at least [N/2].
(3) The only non-zero element in the latter half of S, is a single 1.

We now follow the proof outlined above by investigating how a repeated
non-zero number in some S, influences nz,, ;, the number of non-zeros in
8,1 Notice first that a non-zero number occurring just once in S,
contributes a 1 in §;,, but all occurrences of a repeated number in S, are
replaced by a single non-zero integer in S, ,. For example

S;=® 2 3[oo0oo[o o

S,=5211007"100 0

It follows that, if there are no repeated non-zeros in S, then nz,, , = nz, + 1
and, apart from a{*", all the coefficients in S;, , are 0’s or 1’s. An instance
of this would be:

$5=6 0 3200010 0
S,=6 11100100 0

Itis also clear that the absence of repeated non-zero coefficients is the only
condition under which nz,, , > nz,.
So as soon as nz;, , > nz, the following iterations yield

nz; =4

nz;=35

S;=...(nz,distinct non-zeros) . .. (length N >8)
Siyi=0a...(nz;1’s,rest0%). ..
1
(#0or1)
Si;,=F70...0 1 0...0
- t

(#0or 1) (Because of the
ainS;, )
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We can deduce f # y from the three general properties of strings listed
above. Then

S;,s3=N—3 1 0...0 1 0...0 1 0...0
Sia=N—4 3 0...cccvnrnn... 0100
Sis=N—3 1 0 1 0...... 01000
Sie=N—4 3 0..covvvvnnnn... 0100

and we have reached S;;.

The reader can show similarly that nz,, , = nz, if and only if exactly two
identical non-zero numbers appear in S;. Two or more 1’s then occurring in
S;,, will eventually lead to S, a single 1 in S, implies S,,; and S,
constitute Sy;; all this is left as an exercise.

Since it is impossible that all strings in a loop satisfy nz; > nz,,,, it
follows that for some i, nz; < nz,, , must hold, and as this has been covered
by the above cases we have shown that S| and S,; are the only self- or
co-descriptive loops reached for N > 8.

Concluding remarks

Besides co-descriptive strings, the iterative method here introduced can be
used to produce a variety of related loop phenomena. The sentential
counterparts of co-descriptive strings, for instance, differ significantly from
the latter only in the extra appearance of each number listed. As such they
can be easily generated by adding 1 to the true enumeration at every step in
the iteration. Starting again with the first seven digits of x, for example:

01 2 3 4 5 6
So 31 415 9 2
S, 1 3 2 2 2 21 (add 1 to each coefficient)
S, 1 3 5 2 111 (add 1 to each coefficient)

soon generates a sentential analogue of the co-descriptive triplet (N = 7):

The second sentence employs 1 0%, 4 “1’s,4 2’s, 13°, 14’, 25’

and 16>,

The third sentence employs 1°0°, 5 “1’s, 2 “2’s, 2 “3’s, 1 ‘4°, 2 °5’s and
16°.

The first sentence employs 10, 5¢1’s, 2 ‘2’s, 1°3’, 3 4’s, 1 5’ and
16°.

Whimsical extension of this idea soon leads us to unsuspected literary
canons:

In general, in a self-descriptive sentence there are (N — 3) “1’s, 3 “2’s,
235, 14,15, ..,1N —5),1%N —4),2 (N — 3)s,
1‘(N—2),1“(N— 1) and 1 °N".
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A similar parallel to S;; can be derived of course; N is assumed to be more
than 8.

Making a further departure from the rules governing co-descriptive
strings, the number(s) added to the enumeration at each step in the iteration
may vary. With a little ingenuity, loops of any desired length can then be
produced for all N. Here is an example with loop length 5:

(1) Sentence 2 uses 1 ‘0°, 6 ‘1’s, 4 ‘2’s, 2 ‘3’s, 2 ‘4’s, 1 ‘5°, 2 ‘6%, 1 ‘7’

18’ and 1°9°.

(2) Sentence 3 uses 1°0°, 6°1’s, 4°2’s, 2°3’s, 2°4’s, 1°5°, 1°6°, 2“7’s,

1‘8’and 1°9°.

(3) Sentence 4 uses 1 ‘0°, 7 “1’s, 3 2’s, 2 ‘3%, 1 ‘4, 2 ‘5’s, 1 ‘6°, 1 °7’,

2‘8sand 1°9’.

(4) Sentence 5 uses 1°0°, 8 “1%s, 32%s, 1°3°,1°4’,2°5%,26’s, 17,18’

and 1°9°.

(5) Sentence 1 uses 1°0°, 6 ‘1’s,52’s,1°3°,24’s,1°5,2’,17°,1°8’

and 19",

In this illustration the first sentence refers to the second, the second to the
third, etc., and the last to the first. Different orderings could be used
however, and each will result in its distinct set of sentences. We leave the
exact mechanics of their generation for interested readers to unravel.

Another type of cycle deserving of mention here is what we call a
Fibonacci loop. In these we begin with a pair of strings S, and S, and
develop the series by enumerating both S, _; and S, _,in S,:

N

0123456
Sy | 6 322010
S, | 433110 2
Sp 13333 10 19
S, | 2416100
S, | 3414101

A loop occurs when any consecutive pair of terms is repeated:

©

Sl 3511301
S, 26 03210
S, | 3423011
S| 333310 14
S, 2416100

Gileanings far and near
Monkeying about with fractions

“The chimpanzee appeared to be able to count up to four objects with accuracy. When the
number was between five and six the number of mistakes increased.” From The Times of 6
Muay 1985, sent in by John Backhouse.
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In this example for N =7, (S;, S,) = (S,, §3); a Fibonacci loop of length 6.
Again, a special case of this kind of cycle is when loop length shrinks to its
minimum; in a Fibonacci loop this is necessarily a length of 3:

|

9

01 23456 78
F, | 6 730011101
F, | 7621011101
F, | 59 1100220

Here (F;,F,)=(F,,F,) and thus each string is automatically an
enumeration of its two companion strings. Still further special instances of a
length 3 loop occur when two of the strings are identical:

0 1 2 3 4 5 6 7 8 9
6 6 2 2 0 2 0 2 0 0
73 51012100
735 1012100
or even all three:

012345 6]

6 04 0 2 0 2

6 04 0 2 0 2

6 0 40 2 0 2

As before, sentential counterparts of such loops may also be formed:

The following pair of sentences employ 2 “0’s, 2 ‘I’s, 9 2’s, 5 ‘3%,
5‘4’s,4°5%,5’,2 T’s, 3 8’s and 3 9’s.

The sentences above and below employ 2 ‘0’s, 2 ‘I’s, 8 2’s, 6 37,
54’s,6°5%,3’,2T’s, 2 ‘8’s and 4 ‘9’s.

The previous pair of sentences employ 2 ‘0’s, 2 “1’s, 9 2’s,5 3%,
4°4’s,6 55,4 °6’s,2 “T’s, 3 ‘8’s and 3 ‘9’.

It is a matter of regret that the number of distinct Fibonacci loops is
strictly finite since as string length grows the number of zeros to be
enumerated rapidly exceeds N — 1, thus violating the natural closure

condition 0 < af? < N — 1. A general formula for these loops therefore
does not exist.

Come clean!

“Last year Persil celebrated 75 years, and Hotpoint over 60 years, of caring for your family
wash. That’s over 135 years of expertise.” From a Persil packet, sent in by Ken McKelvie.

Imperial jewel

“The metric equivalent of the calorie is the kilojoule.” From Cooking for slimmers by Carol
Bowen, and spotted by Brian Head.
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Starting from all possible pairs of partitions of 2N, computer-generated

llerations have identified the only 23 existing Fibonacci loops.

loop
01 2 3 4 5 6 7 8 9101112 N length
4 0 2 0 4 5 3
4 0 2 0 4
303 2 2 5 3
2 0 4 40
4 0 3 230 6 3
4 0 2 4 2 0
6 0 4 0 2 0 2 7 3
6 040 2 0 2
2 4 4 2 0 2 0 7 3
3 2 5 1 210
3 33 3101 7 6
2 416 100
4 2 513 100 8 3
4 4 2 2 2 2 00
36 212110 8 16
35321110
53 401120 8 35
4 5211210
4 6 1 1 1 120 8 37
37112020
5 4 2 3 2 1100 9 46
4 5 2 3 2 2 000
6 6 2 2 02 0 200 10 3
73 5 1012100
6 7 3 0 01 1 1 0 1 10 3
76 2 1 011101
6 4 34100 200 10 3
73 3 2301100
6 4 4 4 00 00 20 10 3
8§ 2323 01010
572 1211100 10 31
573 0121100
8 43 41000020 11 3
9 3323000110
610 0 2 0 2 0 0 0 2 O 11 3
9 53 1 01 10011
8 4 4 4 00 0O0O0O0 2 1 3
10 2 323 000101
9 53 10002200 1 6
10 3320101110
11 53101001011 12 3
810 0 2 0 2 0 0 0 OO0 2
10 4 341000000 2 12 3
11 3323 0000011
8 6 4 4 000 0O0O0O0 2 12 3
1133220101001
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The complete loops are readily reconstructed from the consecutive pairs
given in the table.

Finally, it is worth noting that although numerals replace number-names
in all the above sentential forms, this is merely for abbreviation. Written out
in full, a self-enumerating sentence, for instance, can be seen as partially
enumerating its own words. From this vantage we can see better how the
creation of a sentence enumerating all its own words entails only the familiar
iteration process in combination with the addition of appropriate constants,
contingent upon the initial text selected:

This self-descriptive sentence employs two ‘this’s, two ‘self-
descriptive’s, two ‘sentence’s, two ‘employs’s, one ‘zero’, seven
‘one’s, eight ‘two’s, one ‘three’, one ‘four’, one ‘five’, one ‘six’, two
‘seven’s, two ‘eight’s, one ‘nine’ and two ‘and’s.

Co-descriptive word-enumerators are of course similarly constructable,
Indeed, embodied in a computer program, the iterative method has proved
itself a powerful technique in producing self-descriptive patterns of a far
more convoluted kind [2], [3], [4]:

This sentence consists of two a’s, three c’s, two d’s, twenty-five e's,
six f’s, two g’s, six h’s, thirteen i’s sixteen n’s, nine o’s, five r’s,
twenty-eight s’s, nineteen t’s, two u’s, five v’s, seven w’s, four x's,
three y’s and one z.

The present article is intended as a tentative step in the direction of a
complete mathematical theory of all such self-enumerators.
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A wee dram

“By all the rules the whisky should have gone ‘woody’—and indeed it should have
evaporated, because a loss of 2 per cent per annum over 88 years should yield less than
nothing.” From The century companion to whiskies by Derek Cooper, sent in by Professor
R. A. Rankin.
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